
Financing Climate-Resilient Urban Water Reuse Infrastructure: A Strategic Framework for Sustainable Water Management Water use cycle

Harshini Gumudavelly, Disha Chelani

Wastewater Treatment Process for Sustainable Water Reuse

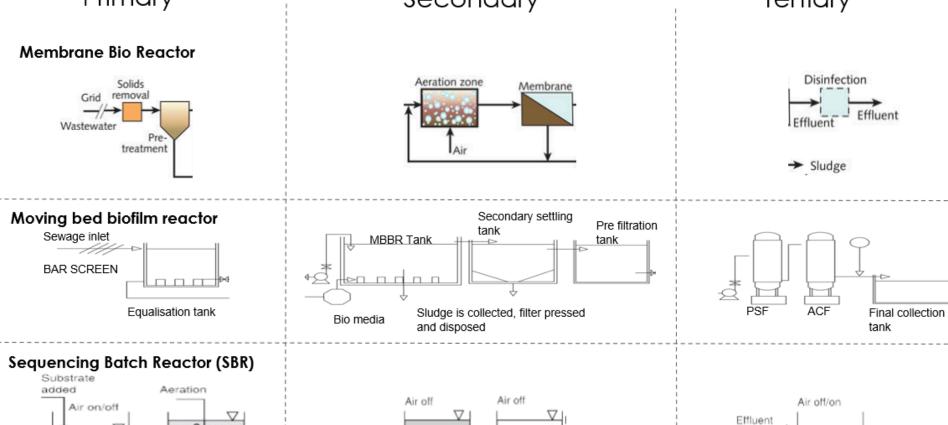
Why do we need to treat and reuse water

The water supply in Hyderabad, like in many other cities, faces various challenges and issues: Rapid urbanization: Increased demand for water, resulting in inadequate supply to meet the needs of the expanding population.

Depleting water resources: Hyderabad primarily relies on surface water sources like the Krishna and Godavari rivers, as well as groundwater extraction. Overexploitation of groundwater has led to declining water tables and the depletion of aquifers.

Unequal distribution: Scarcity is often experienced more severely in low-income neighborhoods and informal settlements. These marginalized communities may face limited access to safe drinking water and inadequate sanitation facilities, leading to health and hygiene issues.

Water pollution: Pollution lakes and rivers, is a significant problem. Industrial discharge, improper waste management, and untreated sewage can contaminate water sources, making them unfit for consumption and exacerbating water scarcity issues. Why Wastewater is not Reused in general


Not all citizens are well informed about reuse of wastewater

> A I. £ N.A.

Citizens who Acknowledge Reuse of Wastewater avoid reusing owning to

• Expenses incurred in treating wastewater are

Wastewater Treatment Infrastructure: Centralized vs Decentralized			Absence of Mandatory Law/Regulation in place		Dist	 Distrust in the Quality of treated wastewater 				
Central STPs	On-site Sanitation Systems (OSSS)		Non prevalence of standard Reuse practices for referral			 Poorly Designed STP by Builder Poor O&M by Operators 				
	VS X		Why Wastewate	r is <mark>not</mark> re	used					
 Serve a large urban area 	 Designed for smaller communities 	Not	Treated at The first place		Not oper	ated by RWA	s due to: ——	– Operation and A	Naintenance:	
 Higher treatment capacity 	 Distributed across multiple locations 	•	RWAs blame the builder for the	e Absence of		and noise distur	•	Difficulty in I	Hiring O&M	
 Constructed at a single location 	within the community		STPs Space constraint - occupies si	gnificant Car		andards and nstructed	design of	operators	due to	
Larger treatment units requiring	Typically compact and modular in design		spaces Higher CapEx costs			e of Regular	Audits or	unauthorised payment Expens	hiring and es	
high investment and maintenance	Treats wastewater closer to its source	•	Design specifications not men building codes	tioned in the		ng/supervision operational kno	owledge	 OpEx costs O&M operator 	rs are not	
Requires an extensive sewerage network	Treated effluent can be reused on-site	•	Absence of Inflow and outflow to non adherence to the se		• Expense	es	•	licensed leadir	ng to poor	
 Managed by a centralized authority 	Managed by local operators or facility managers		hence extra consumption	of cheaper				quality of treate consequently di		
Infrastructure choice impacts long-term	financial sustainability and climate resilience		freshwater which eradicates treat the water	the need to				the citizens to rea	lse	
			Not built by the builder - Not built by the builder - Non existence of mandated law water No provision for filtration and ter Absence of connecting treated household	tiary treatment by	/ the builder	•	Absence of Chen validated Tests No incentives/Rel	strust among the nical treatments and bates in property or a h water is cheaper	verified and	
		- Treatm	nent Costs compariso	n						
	· · · ·		units		100pcd	150pcd	200pcd	250pcd	300pcd	
Primary Sec	ondary Tertiary	Fresh water cost	₹/KL	10	12	12	22	22		
Membrane Bio Reactor		25HH	Treated Water cost/KL	₹/KL ≢/KI	261	176	134	109	92	
	Disinfection		Electricity Chemicals & Repairs	₹/KL ₹/KL	3 4	3 4	3	3 4	3 4	
Solids	n zone Membrane Disinfection									

_	units		100pcd	150pcd	200pcd	250pcd	300pcd
Fresh water cost	₹/KL	10	12	12	22	22	
25HH	Treated Water cost/KL	₹/KL	261	176	134	109	92
	Electricity	₹/KL	3	3	3	3	3
	Chemicals & Repairs	₹/KL	4	4	4	4	4
	Operation and Maintenance	₹/KL	254	169	127	102	85
100HH	Treated Water cost/KL	₹/KL	71	49	39	32	28
	Electricity	₹/KL	3	3	3	3	3
	Chemicals & Repairs	₹/KL	4	4	4	4	4
	Operation and Maintenance	₹/KL	63	42	32	25	21
250HH	Treated Water cost/KL	₹/KL	32	24	20	17	15
	Electricity	₹/KL	3	3	3	3	3
	Chemicals & Repairs	₹/KL	4	4	4	4	4
	Operation and Maintenance	₹/KL	25	17	13	10	8
500HH	Treated Water cost/KL	₹/KL	20	15	13	12	11
	Electricity	₹/KL	3	3	3	3	3
	Chemicals & Repairs	₹/KL	4	4	4	4	4
	Operation and Maintenance	₹/KL	13	8	6	5	4
1000HH	Treated Water cost/KL	₹/KL	13	11	10	10	9
	Electricity	₹/KL	3	3	3	3	3
	Chemicals & Repairs	₹/KL	4	4	4	4	4
	Operation and Maintenance	₹/KL	6	4	3	3	2

Sludae

Technology requirements and cost variation

000

(")

°°°°°

Factors	Units	MBR	MBBR	SBR	ASP	UASB	WSP
Land requirement	m²/(MLD)	450	550	550	730-1010	1100	6100
Capital cost	\$ldcs/MLD	506	182	194	182	182	106
Civil construction	% and \$lacs/MLD	60% (304)	60% (109)	60% (116)	60% (109)	60% (109)	60% (64)
Machinery (E&M)	% and \$lacs/MLD	40% (202)	40% (73)	40% (78)	40% (73)	40% (73)	40% (42)
O&M costs	\$ldcs/MLD	11	27	20	27	27	20
Labour costs	(\$locs/pq)/MLD	nil	1.01	0.87	1.41	1.41	1.08
Electricity requirements	(kWh/d)/MLD	302	223	153	185	125	6
Electricity costs	(\$locs/pq)/MLD	11	8	6	7	5	-
Chemical costs	(\$locs/pq)/MLD	nil	9	5	9	11	12
Civil works maintenance	(\$locs/pq)/MLD	nil	3	2	4	5	3
E&M works maintenance	(\$locs/pq)/MLD	nil	1	2	1	1	0
Annual repair costs	(\$locs/pq)/MLD	nil	4	4	5	5	-

Financing Model	Process	Example	Implementation Process in India
Blended Finance	Combines public, private, and donor funds to de-risk investments in STPs and water reuse.	Kenya's Water Fund: Used donor grants + private investments to build wastewater treatment in urban slums.	 The government provides concessional loans via NIIF (National Investment and Infrastructure Fund). [Source: NIIF Annual Report] Development banks (e.g., World Bank) co-invest with the private sector. [Source: World Bank India]
Green Bonds	Bonds issued to raise capital for environmentally sustainable projects like STPs.	IREDA Green Bonds (India): Raised \$300M for green energy & wastewater projects.	 SEBI-regulated Green Bond framework for infra projects. [Source: SEBI Guidelines] Municipal corporations issue bonds for STP funding (e.g., Pune, Hyderabad). [Source: MoHUA]
Municipal Infrastructure Funds	City-level funds pool money from taxes, water tariffs, and development fees to finance STPs.	Sydney Water Fund (\$32B): Used tariffs + municipal debt for STP upgrades.	 Smart Cities Mission allocates funds for wastewater infra. [Source: Smart Cities Mission India] Property tax surcharges are used in cities like Bengaluru. [Source: BWSSB]
Performance- Linked Financial Instruments	Ties financial returns to the efficiency of water reuse and STP operations.	China's PPP Model: Payments to STP operators based on water quality outcomes.	 Viability Gap Funding (VGF) for private STP operators with efficiency- linked payouts. [Source: NITI Aayog] Urban Local Bodies (ULBs) introduce performance-based contracts. [Source: Jal Shakti Ministry]
Policy Interventions	Regulations and incentives (tax rebates, subsidies, mandates) to promote STPs.	Singapore's Water Efficiency Incentive: Tax rebates for industries adopting water recycling.	 - 50% capital subsidy for decentralized STPs under AMRUT 2.0. [Source: MoHUA] - Mandatory reuse for large projects in Tamil Nadu. [Source: TNPCB]
Cost-Benefit Analysis	Evaluates economic benefits (reduced freshwater use, lower pollution) vs. costs (CAPEX, OPEX).	California's Water Recycling: \$1 invested = \$4.3 in long-term benefits.	 NITI Aayog's framework for STP cost-benefit models. [Source: NITI Aayog] State-specific studies (e.g., Maharashtra) justify reuse mandates. [Source: Maharashtra State Water Policy]

Source: Performance evaluation of sewerage treatment plants, CPCB, 2013

Global South Academic Conclave on WASH and Climate 2025

Gates Foundation viega foundation